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Synopsis 

A theoretical model was developed to describe solute transport through moderately swollen 
networks. The model is an extension of the previous analysis of Peppas and Reinhart (1983), 
and it describes the normalized effective diffusion coefficient of the solute through the network 
as a function of the equilibrium degree of swelling, Q, the hydrodynamic radius of the solute, 
r,, the number average molecular weight between crosslinks, M, and a function f ( [ )  of the 
mesh size [, which takes into consideration barriers due to cro&links, entanglements, etc. For 
the development of this model, the Cohen-Turnbull (1958) free volume theory was modified 
to incorporate topological and mobility characteristics from de Gennes’ analysis (1979). 

INTRODUCTION 

General 
Transport across membranes has been studied for more than a century, 

but only recently has the technology of membrane separation processes at 
the molecular level been developed. The concept of molecular separation 
effected by permselective membranes has had an obvious appeal as a non- 
denaturing method of fractionation of proteins. Certain inherent advan- 
tages of membrane separation over conventional technologies are quite 
appealing: energy efficiency, pollution control, and biomedical applicability. 
Numerous biomedical and biochemical applications require membranes of 
separation purposes, due to very specific performance requirements coupled 
with the necessity of biological compatibility. 

A variety of structural and morphological characteristics of the polymer 
affect solute diffusion through a membrane composed of a polymeric ma- 
terial. On the macroscale, thickness, pore structure (including size, size 
distribution, and type), laminations, or asymmetry of the membrane are 
found to influence mass transfer rates and selectivity. Other features be- 
come important on the microscale: fixed charges, dipoles, crystallinity, de- 
gree of swelling, degree of crosslinking, and thermodynamic transitions 
related to macromolecular relaxation phenomena (glassy/rubbery transi- 
tions in the presence of a solute and a swelling agent). 

The term “heterogeneous membrane” has been used to indicate the in- 
ternal physical structure and external physical and chemical performance 
of some membranes. From one standpoint, almost all membranes could be 
considered heterogeneous, despite the fact that, conventionally, membranes 
prepared from coherent gels have been called homogeneous. In this work 
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it is assumed that within homogeneous membranes, there is neither mac- 
roscopic phase segregation of the polymeric and the nonpolymeric compo- 
nents nor heterogeneity in components, and therefore no macroscopic 
channels or pores. The main distinction between this homogeneous mem- 
brane concept, such as the analysis of Yasuda and Lamaze,‘ and the pore 
models of membrane behavior lies in the physical meaning of the pores. A 
pore model of membrane behavior assumes that fixed pores are present. In 
addition, the principles that apply to macroscopic phenomena are also as- 
sumed to apply to microscopic phenomena. This model leads to a calculated 
pore size of molecular dimensions, using Poiseuille’s law, which may not 
have a realistic physical meaning. 

The channels considered as pores in homogeneous membranes are not 
fixed in size or location. The geometry of the polymer network within the 
membrane sets the upper limit of the cross section of a penetrant molecule 
by limiting the size of the “pores.” As a result of the plasticizing effect of 
any solvents present, sections of the macromolecules can exhibit a fairly 
high degree of mobility; the size and shape of the “pores” may thus be 
changing continuously. 

Effect of Polymer Structure on Solute Diffusion 

The polymer medium has a considerable effect on solute diffusion. In 
essence, diffusion is controlled by the ease of forming enough free space in 
the membrane to enable the unit diffusion step to occur. In the free volume 
theory of diffusion,2 this is discussed in terms of a probability of finding 
enough local free volume, while from the activation energy viewpoint, the 
process is discussed in terms of the energy needed to create the free space.3 
In both theories, the flexibility of the polymer chains and the cohesive 
energy of the polymeric structure are important as they relate to chain 
mobility. 

The local segmental mobility (chain stiffness) is inherently affected by 
chain interactions arising from hydrogen bonding, polar group interactions, 
or simple van der Waals attractions among the components of the chains. 
As the number of these interactions per unit chain length increases, the 
segmental mobility, and therefore the rate of solute permeation, decrease. 
Any modification to the polymer chain structure which serves to change 
the segmental mobility changes the membrane permeability as a conse- 
quence. 

A sufficiently high degree of crosslinking (dependent upon the penetrant 
size) will decrease the rate of permeation by affecting chain segmental 
mobility. In crosslinked polymeric networks, the macromolecular chains 
retain essentially their entire mobility, although junction fluctuations are 
hindered.4 The more tightly crosslinked the network, the greater is the 
effect on the chain mobility. The crosslinking density px, the number average 
molecular weight between crosslinks, a,, and the mesh size k are three 
interrelated structural parameters indicative of the amount of crosslink- 
ing present in the network. Of the three parameters, the mesh size [ may 
give the best indication of the structural screening effect of the membrane. 

The decrease in chain mobility caused by increased crosslinking usually 
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has been found to increase the activation energy for diffusion, thereby 
decreasing the diffusion ~oefficient.~ Both the increase in activation energy 
and the proportionate decrease in the diffusion coefficient become greater 
as the size of the diffusing molecule increases, suggesting that at  high 
crosslinking densities there is a tendency for the diffusion medium to act 
as a molecular sieve in the same manner as inorganic zeolites.6 

The mesh size of the polymeric network of a membrane, t ,  is the distance 
between crosslinks, both chemical and physical (e.g., chain entanglements). 
In this work, the mesh size is used almost interchangeably with the mo- 
lecular weight between crosslinks. The exact relationship between these 
two parameters is developed. The mesh size, regardless of how it is ex- 
pressed, is a measure of the effective area available for diffusion. This area 
determines the screening effect on solute diffusion, severly restricting the 
passage of very large molecules. As such, the mesh size will be stressed as 
a structural parameter of vital importance in the determination of the 
permeability of a polymeric membrane. 

Numerous polymeric membranes are used in the crosslinked form. The 
polymer molecules are reacted at various points in their backbone chains 
to form a 3-dimensional network. Although this network is not souble in 
thermodynamically compatible liquids, it can be swollen by them. In all 
but highly swollen polymeric networks, chain overlapping can considerably 
alter the network structure, effectively resulting in a more highly cross- 
linked material. These chain entanglements act as physical crosslinks. The 
single most important structural parameter of the macromolecular network 
is the number average molecular weight between crosslinks, a,. When 
determined using swelling experiments, ac refers to the distance between 
physical and chemical crosslinks, without differentiati~n.~ The mesh size 
in loosely crosslinked, highly swollen membranes can be calculated by re- 
lating it to the molecular weight between crosslinks of a polymeric network 
using the same analysis as that provided by Flory8 or with more advanced 
theories in the case of highly crosslinked networks.9 

The number of studies investigating the effect of the crosslinking density 
of polymers on the solute diffusion coefficient is limited. This is mainly due 
to experimental difficulties in obtaining accurate values of the molecular 
weight between crosslinks.1° Instead, most studies report some other pa- 
rameter related to this molecular weight, e.g., the amount of crosslinking 
reagent added." The importance of the crosslinking of the macromolecular 
chains has been recognized previously in providing a screening effect for 
solute diffusion. This structural parameter is almost always associated with 
the degree of swelling, degree of hydration, or an equivalent measure of 
the polymer volume fraction.'J2 

A NEW PHYSICAL MODEL FOR DIFFUSION IN MODERATELY 
SWOLLEN POLYMERS 

Diffusion in Swollen Networks 

The theory for prediction of the screening effect of highly swollen mem- 
branes, developed el~ewhere,~ is modified to predict the screening effect of 
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moderately swollen membranes. The assumptions used to derive an  expres- 
sion for the diffusion coefficient include the following: 

i. Diffusing molecules behave as ideal solutes. 
ii. A certain fraction of the molecules present has the energy required 

for diffusion as a result of the normal fluctuations in the population's energy 
distribution. 

iii. Local equilibrium exists between the activated molecules (those pos- 
sessing the required energy) and the nonactivated molecules. 

iv. No cooperative diffusion motions are present. 

Diffusivity from the Theory of Rate Processes 

Diffusion can be modeled as a rate process including a transition state.13 
Considering the diffusion process on a reaction coordinate, the net flow of 
molecules moving in the forward direction per unit area per unit time, u, 
a mass velocity, can be expressed as 

where dc/dx is the concentration gradient (negative since the concentration 
decreases in the direction of diffusion), A is the characteristic distance be- 
tween successive equilibrium positions, and k is the specific reaction rate 
for the diffusion equivalent to a characteristic frequency v. The diffusion 
coefficient is defined in terms of this net flow such that 

D = A2k (2) 

The parameters A and k are functions of the structure and properties of 
the diffusing species and its environment, the diffusion medium. 

The experimentally observed Arrhenius temperature dependence of the 
diffusion coefficient is an indication of the dependence of the characteristic 
frequency v on temperature. This temperature dependence was recognized 
as an  energetic effect3; the diffusion coefficient can thus be expressed in 
terms of an activation energy. According to the theory of absolute reaction 
rates, the specific rate constant for diffusion in one dimension, equivalent 
to the characteristic frequency v, is given by 

kT F* 
(3) 

where F* and P are the partition functions of the system in the activated 
and normal states, respectively, e ,  is the activation energy per molecule at 
0" K, and kT/h is the universal frequency factor, its terms having their 
usual interpretations. The energetic term of eq. (3) may be related to AG*, 
the standard free energy change accompanying the formation of the acti- 
vated state: 

v = (kT/h) exp(-AG*/RT) (4) 
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From thermodynamics considerations, an  alternate expression for the free 
energy change is possible, and the expression for the diffusion coefficient 
becomes 

D = A2(kT/h) exp(AS*/R) exp(-AH*/RT) (5) 

where AS* and A H *  are the standard entropy and enthalpy changes ac- 
companying the diffusion process. 

Derivation of the Screening Effect of Swollen Networks 

To develop an expression for the screening effect of a swollen network 
(membrane), the expression derived for the diffusion coefficient of a solute 
in a solvent is extended to the three-component membrane systems.' The 
major assumption used in this extension is that the various components of 
the membrane are of a similar size on the molecular scale.14 Using subscripts 
1,2, and 3 to indicate the solvent (usually water), solute, and polymer, and 
the subscript 13 to designate the swollen polymer membrane, the expression 
for the diffusion coefficient of a solute in a swollen polymer membrane is 
derived from eq. (5) in a manner similar to that followed by Yasuda et al.15: 

D2,13 = A h 3  (kT/h) e~p(hS;, '~/R ) ~ X ~ ( - A H ; , ~ ~ / R T )  (6) 

A similar expression can be written for the diffusion coefficient of the solute 
in the solvent only. The normalized diffusion Coefficient, a ratio of the 
diffusion coefficient of the solute in the solvent-swollen membrane to the 
diffusion coefficient of the solute in the solvent only, gives a good indication 
of the screening effect of a membrane. For an isothermal system, the nor- 
malized diffusion coefficient can be written as 

An additional assumption made is that the membrane is swollen enough 
such that the enthalpic contributions to the diffusion coefficients cancel. 
This is reasonable since, in both cases, the diffusing species encounters an 
environment composed essentially of water. If the membrane is highly swol- 
len (with equilibrium polymer volume fraction ug I O.lO), one could assume 
the jump lengths for diffusion would be approximately the same. The Pep- 
pas-Reinhart model4 for solute diffusion in highly swollen makes this as- 
sumption. The jump length for diffusion in a membrane in any state other 
than the highly swollen is not the same as the jump length in a pure solvent. 

Extension of Theory to Moderately Swollen Membranes 

A number of attempts have been made to explain the temperature de- 
pendence of the diffusion coefficient and the observed relationship between 
penetrant size and activation energy of diffusion. These attempts may be 
classified as either free volume or molecular theories. An example of the 
former is the hard sphere liquid model,16 which is thermodynamic in nature, 
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i.e., the theory does not take into account the detailed molecular structure 
of the polymer-penetrant system. The basic idea behind the development 
of the free volume theory is that molecular transport occurs by the move- 
ment of molecules into voids, with a size greater than some critical value, 
formed by redistribution of the free volume. This free volume theory pre- 
dicts a strong temperature dependence of the activation energy of diffusion 
above the glass transition temperature Tg, and has been successfully applied 
to the diffusion of complex molecules. 

In this molecular theory, a cell model has been used to interpret the 
thermodynamic properties of the polymer chain molecules; expressions de- 
rived are based on the predictions of intermolecular and intramolecular 
interactions resulting from the model. The results concur only with diffusion 
of relatively simple molecules through polymers, as the activation energy 
is not predicted to be explicitly dependent on temperature. To analyze the 
expression for the normalized diffusion coefficient, both theoretical frame- 
works will be used: the free volume theory to analyze the entropic contri- 
bution of eq. (7) and the molecular theory to predict the jump length for 
diffusion. 

Determination of the Entropic Contribution 

The free volume theory considers transport in a liquid consisting of hard 
spheres. The potential energy function which is obtained as a result of the 
model is constant except when there is intermolecular contact, when it is 
infinite. This function approximates the behavior of simple liquids rather 
we11I6; and any liquid bound by van der Waals forces would be adequately 
represented. Considering the swollen state of polymer membranes, a pen- 
etrant molecule can be thought of as diffusing essentially through the sol- 
vent phase; the free volume theory may thus be applied to a swollen 
membrane system. 

The effect of the free volume of a system on diffusion is through the 
statistical redistribution of the free volume. Diffusing molecules move with 
a gas kinetic velocity but are confined to a “cage” bounded by immediately 
neighboring molecules. Random fluctuations in density occasionally open 
a hole within the cage large enough to permit a considerable displacement 
of the molecule within the cage. Successful diffusive transport occurs if 
another molecule fills the hole vacated by the first molecule before it can 
return to its original position. Diffusion is treated simply as translation of 
a molecule across a void within its cage, and does not occur as a result of 
an  activation. 

Using continuum mechanics, an  expression for the average distribution 
of free volume, p(u),  for a system with no energy change upon redistribution 
can be obtained: 

where u is the free volume, uf is the average free volume, and y is an  
overlapping factor, usually 1.0 (no overlap). Diffusion does not occur unless 
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the free volume ufexceeds a critical volume u *, where u * is just large enough 
to permit another molecule to fill the void left by the displacement. The 
total probability of finding a hole of volume u*  or larger is obtained from 
the distribution of probabilities through integration of eq. (8) within the 
appropriate limits: 

The integral may be simplified: 

This equation for the probability of a free volume necessary for diffusion 
is valid for diffusion in a pure liquid only. 

The free volume analysis is now applied to a polymeric membrane system. 
The entropy term in the normalized diffusion coefficient, eq. (7), results 
from two processes and the associated probabilities: (i) the conformational 
probability of forming a hole sufficiently large for the passage of the dif- 
fusing molecule; and (ii) the probability of finding in the membrane space 
for a hole of at least the same size as the diffusing molecule unhampered 
by the impermeable chain crosslinks of the membrane. As the first prob- 
ability is analogous to that calculated in the free volume theory, the total 
probability may be expressed by imposing an  additional proportionality 
factor onto eq. (10). 

The Cohen-Turnbull free volume analysis16 was modified by Fujita2J7 in 
order to interpret diffusion in a two-component system of polymer and 
solvent. This modified version is set up as a correlative rather than a pre- 
dictive theory and has provided a useful basis for describing the temperature 
and concentration dependence of the diffusion coefficient in different poly- 
mer-solvent s y ~ t e m s . ’ ~ J ~  Redefining uf as the average free volume of a mem- 
brane per unit volume of the membrane system (incorporating the overlap 
factor y), the probability that a diffusing species of volume ud will encounter 
a membrane hole of volume up, where up 2 ud, may be expressed as 

This function is the product of two probabilities describing the chance that 
the diffusing species of volume ud can find a “hole” in the membrane of 
size at least u * ,  the effects of membrane and diffusing species size having 
been split. The term B(uJ is dependent primarily upon the size and shape 
of the polymer structure in the membrane formed by the chemical crosslinks 
and physical entanglements (i.e., the pore or mesh structure). The second 
term, exp( - ud/ uf), is dependent upon the size and shape of the diffusing 
species as before. 

The calculation of the entropic contributions to the normalized diffusion 
coefficient is straightforward using the well-known Boltzmann equation 

(12) A S *  = R In p(u*)  
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For diffusion of a solute of size u2 in a polymeric membrane, the entropic 
contribution may be written as 

where uT3 refers to a characteristic size of the holes present in the membrane 
and V,, refers to the average free volume of the membrane. For diffusion 
of a solute in a solvent only, the entropic contribution may be written as 

AS;,IR = In B(u;) - u2/V1 (14) 

where u;  refers to a characteristic size of the holes present in the solvent 
and V ,  refers to the average free volume of the solvent. The proportionality 
factor B(u*) will be chosen such that B(u:) is identically equal to 1.0 as 
this term represents the effect of the presence of the membrane. 

Upon substitution of the expression relating the entropic contributions 
to the probability of a void of a certain volume, eqs. (13) and (141, into the 
expression for the normalized diffusion coefficient of a membrane, eq. (71, 
one obtains the expression 

Determination of the Diffusional Jump Length 

The jump length for diffusion in membranes may be predicted based on 
an analysis of concentrated polymer solutions.m It is assumed that the 
polymer, although noncrystalline, possesses regions where the chain bun- 
dles are parallel for short distances (of the order of several nanometers) 
such that these regions have an approximate semicrystalline order. X-ray 
diffraction results for various noncrystalline polymers show some order 
exists both parallel and perpendicular to the polymer chains; in addition, 
the small difference in density between a crystalline and a noncrystalline 
form of a polymer indicates that the average packing in each form cannot 
be much different.21 Prediction of the jump length in swollen membranes 
is then based on a tube model representing the microstructure of a polymer. 

For diffusion through a membrane structure consistent with the tube 
model proposed, the penetrant may move in two ways: (i) along the axis of 
the chain bundles (within a tube formed by the bundle) or (ii) perpendicular 
to the axis of the chain bundle (between two chains sufficiently separated). 

During the course of normal thermal vibrations and rotations of the 
polymer segments, the chain bundle expands and contracts. The motion of 
the segments can coordinate in such a way as to produce a cylindrical void 
adjacent to the sorbed molecule. The presence of this void would allow 
penetrant movement parallel to the polymer chains. Since the oscillating 
movement of the polymer segments is likely to be slower than the trans- 
lational rate of the penetrant molecule by an order of magnitude or more,2o 
the void exists long enough, and this type of penetrant motion occurs rapidly 
enough such that the penetrant may make jumps of any length along the 
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axis of the chain bundle. This type of solute movement is halted whenever 
the molecule encounters a barrier at either end of its confining tube. After 
encountering such a barrier, the molecule may progress through the ma- 
terial only by moving via a separation of the polymer chains to an adjoining 
tube. This second process requires an activation energy equal to that needed 
to separate the chains just enough to accommodate the molecule. The pen- 
etrant moves a long distance within the tube formed by polymer chains 
before encountering a barrier large enough so that chain separation be- 
comes a viable alternative. 

The two processes, movement parallel and perpendicular to the polymer 
chains, occur effectively in series. As it is the energy of the shortest jump 
that determines the observed activation energy, the first process may be 
regarded as having a very small activation energy, effectively zero, while, 
for the second process, there is an activation energy equal to that necessary 
to produce a minimum chain separation that will accommodate the mole- 
cule. If the two processes occurred in parallel, the first would predominate 
due to energetic considerations, and no activation energy of any significance 
would be observed. As this is not the case, the processes would seem to 
occur in series, and the observed activation energy would be that of the 
second process, which is rate-limiting. 

Although the jump length is not predictable within the limits of the 
present theory, a functional form is suggested by simple thermodynamic 
arguments. In analyzing the tube model for polymer-solvent system to 
predict the jump length, it is noted that the diffusional jump will be ter- 
minated by a barrier requiring more energy for penetration than that re- 
quired for chain separation. Thus the jump length will be inversely 
proportional to the concentration of barriers of penetration energy AE, 
assuming that the frequency of these barriers along the chains is a 
monotonically decreasing function of this energy. The barriers to diffusion 
parallel to a polymer chain bundle would include crystallites, permanent 
physical entanglements, and chemical crosslinks. In practice, all forms of 
the barriers will act as chain crosslinks and, therefore, will be treated as 
such. 

As a result of these assumptions listed above, one may formulate an 
expression for the crosslinking density and, therefore, the jump length. The 
crosslinking density (or molar concentration of crosslinks) may be expressed 
as a function of the free energy of the crosslink, AG‘ (in relation to the 
well-ordered state), and the forming temperature of the polymer, T,: 

px N exp(-AG’lRTf) (16) 

As Tf is usually well above the temperature range of the diffusion exper- 
iments, any physical entanglements are “locked in,” i.e., permanent, as 
previously assumed. The diffusional jump length is inversely proportional 
to the concentration of entanglements of penetration energy AG‘, assuming 
that the frequency of entanglements along the chains is a monotonically 
decreasing function of this energy. The jump length then is given by the 
expression 
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A = A, exp(AG'/RTf) (17) 

where A, is a length that corresponds to the number of segments on one 
chain that are involved in an entanglement. 

The crosslinking entropy A S t  and internal energy A E '  contributions to 
the free energy of the crosslink are assumed to be increasing functions of 
the crosslinking density. These quantities are also assumed, as a first ap- 
proximation, to be proportional to each other; the proportionality is such 
that A E '  dominates: 

A S '  N k lAE '  (18) 

As used in the previous expression, k,  is a constant such that 

klTf < 1 (19) 

The expression for the free energy of the crosslink may then be simplified 
to 

AG' = AE'(1  - k,Tf) (20) 

An equivalent expression for the free energy of the crosslinks, introducing 
the dependence on the crosslinking density as indicated by the ratio of the 
number averages of the molecular weight between crosslinks, a, to the 
molecular weight of the chains, a,, follows accordingly: 

_ -  
AG' = AE'(1 - M c / M , )  (21) 

It is to be noted that the molecular weight ratio satisfies the requirement 
that the dimensionless constant in the expression is less than one. 

Identifying A E '  with the penetration energy A E  and inserting of eq. (21) 
into eq. (171, we obtain the desired expression for the jump length: 

A E '  
(RTf 

A = A, exp - (1 - MJM,,) (22) 

Upon rearrangement to stress the dependence on the molecular weight 
ratio by lumping some parameters into a constant K,, eq. (22) gives the final 
form of the expression for the diffusional jump length in a swollen polymeric 
membrane system: 

A = A,exp[k,(%, - a,,)] (23) 

The solute jump length in the solvent alone will be of the order of $, and 
will be considered to be equal to this quantity. 

Then, using eq. (15) and the various expressions derived for the various 
parameters, the expression for the normalized diffusion coefficient in highly 
or moderately swollen crosslinked polymeric networks becomes 
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where k3  is simply twice the constant k2. Use of this expression adds com- 
plexity to the model in that the normalized diffusion coefficient is now 
directly dependent on the molecular weight between crosslinks, M,. 

ANALYSIS OF THE MODEL PARAMETERS 

Effect of Mesh Size of the Membrane 

The effect of the mesh size of the polymeric membrane on the solute 
diffusion coefficient is expressed by the term representing the characteristic 
area available for permeation, B(uT3) in eq. (151, in the physical model for 
solute diffusion presented. 

A functional form of the parameter B(uT3) has been proposed for highly 
swollen  membrane^,^ considering the diffusion coefficient to diminish in 
proportion to the area available for diffusion. The probability B(u?,) has 
been expressed then as a function of the volume fraction of mesh sizes 
larger than a critical mesh size 1;, which is a minimum for a specific pen- 
etrant below which there is effectively no diffusion. Expressing the volume 
of mesh in terms of a cross-sectional area, a,,,, and a characteristic length 
1, of the same magnitude as the diffusional jump length, uT3 may be written 
as 

As the cross-sectional area of a mesh, the exposed area of an ideal tetra- 
functional mesh, is proportionalz2 to the square of the end-to-end distance 
r, then a, is proportional to the following quantities: 

a,,, a r2 a nP a M, (26) 

where n is the number of links between crosslinks for chains of the structure 
-[C-C],- and 1 is the bond length between adjacent carbon atoms. The 
number of links for vinyl polymers is defined by 

where M, is the molecular weight of the repeating unit. The upper limit of 
the mesh size for unobstructed diffusion is characterized by a, = a,, i.e., 
the absence of crosslinks. The lower limit of 2, of the network is the value 
of M", corresponding to the mesh size below which no diffusion of a specific 
solute occurs. The probability B(uT3) has then been written as a function 
of the molecular weight between crosslinks of the network and these lim- 
iting values for the molecular between crosslinks: 
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in which %,, > %, > %,* To a first approximation in highly swollen mem- 
branes, the function is linear: 

B(43) N (M, - M,*)/(M, - 2:) (29) 

The parameter %,* can be obtained from experiment by a best fit of the 
data. 

It must be noted that this expression for B(u,*,) was develeped for highly 
swollen, amorphous crosslinked systems. The functionality may be assumed 
to be linear only for such membranes, either loosely crosslinked or highly 
hydrophilic (if water is used as the solvent) or both. The normalized diffusion 
coefficient, as given by eq. (15) incorporating eq. (291, correlates well the 
experimental results of water-soluble solutes in highly hydrophilic mem- 
branes. Considerable deviation from the predicted values of the diffusion 
coefficient occurs, however, when this linear expression is used with mem- 
branes either highly crosslinked, which are usually poorly swollen, or poorly 
swollen because of poor compatibility with water. Poly(2-hydroxyethyl 
methacrylate) is an  example of such a membrane (limited in its swelling 
ability in water for thermodynamic reasons), which is not adequately rep- 
resented by this approach. 

In order to more accurately predict the effect of the mesh size on the 
screening effect of a nonhighly swollen macromolecular network, the work 
of de Gennes was used.23 The theoretical framework presented by de Gennes 
for the characterization of polymer solutions was applied to swollen poly- 
meric membranes based on a n  analogy between dilute and concentrated 
polymer solutions and highly and poorly swollen polymeric membranes. 
The theory of Peppas and Reinhart4 was redeveloped for nonhighly swollen 
and/or highly crosslinked systems using concepts from the scaling theories 
of polymer solutions as these theories apply to swollen polymeric networks. 

An analysis of swollen polymeric networks based on an  analogy between 
polymer solutions and swollen networks, analyzed according to de Gennes’ 
simple intuitive approach, has been proposed to describe the swelling pro- 
cess in these networksz4 The parallel between polymer solutions and 
polymeric networks is to be drawn with the following correspondence:dilute 
solutions-highly swollen membranes; semidilute solutions-moderately 
swollen membranes; concentrated solutions-poorly swollen membranes. 
The physical significance of the different concentration regions will now 
be discussed. 

As the solvent is removed from a polymer solution, the intermolecular 
interactions gradually become more pronounced, and at a certain concen- 
tration c *  the domains of the polymer molecules are in a state of permanent 
contact. The concentration at which this occurs depends on the geometrical 
shape and the extension of the polymer molecules, the flexibility of their 
backbone chains, the extent of mutual chain attraction, and the width of 
the molecular weight d i s t r i b u t i ~ n . ~ ~  Upon increase in concentration, the 
semidilute region is attained, and entanglements are formed. A further 
increase in the concentration to a certain c + results in homogeneous seg- 
ment distribution over the available volume. In this regime a homogeneous 
network of physically entangled polymer molecules is developed in the 
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polymer solution. The concentrations c* and c +  have been regarded as 
critical concentrations for the transitions from dilute to semidilute and 
semidilute to concentrated solution behavior, respectively. 

Polymer Solution Behavior 

The value of the overlap concentration can be expectedz3 to be comparable 
to the local concentration inside a single unperturbed polymer chain coil. 
In a good solvent, this implies that c* may be expressed as a function of 
the number of links in the polymer chain, n, and the bond length between 
two consecutive atoms in the backbone chain, 1: 

(30) c *  1-3 n-4/5 

In terms of the polymer volume fraction, the corresponding threshold, 
v;,may be defined in a similar manner: 

The number of links in the macromolecular chain is directly proportional 
to the molecular weight of the polymer. Since the threshold concentration 
refers to the onset of chain overlap, i.e., formation of entanglements, then 
this molecular weight may be considered as the number average molecular 
weight between entanglements, a,. Substitution of the parameter into eq. 
(31) yields an expression for the threshold polymer volume fraction in terms 
of this molecular weight between entanglements: 

A decisive step toward the understanding of semidilute polymer solutions 
was the introduction of a screening length, the mesh size, and the “blob” 
model. The concept of the screening length for correlation was first intro- 
duced to describe concentrated polymer solutions.z5 A semidilute polymer 
solution containing a certain amount of chain overlap behaves in much the 
same manner as a network, even to the extent of exhibiting a certain 
average mesh size. This network, composed of physically entangled ma- 
cromolecules, is visualized as a sequence of blobs of size (, with each blob 
occupying a volume proportional to c3. The blob encompasses the portion 
of the polymer chain between two successive entanglements. Each blob acts 
as an individual unit with both hydrodynamic and excluded volume inter- 
actions. 

in the semidilute region, i.e., u; < < ug < < 1, in 
the presence of a good solvent is expressed as follows: 

The scaling form of 

The mesh size decreases rapidly with concentration of the polymer in a 
good solvent. 



2602 PEPPAS AND MOYNIHAN 

Polymer Network Behavior 

A swollen polymeric gel consists of a crosslinked network of flexible 
macromolecular chains which may be thought of as closely packed coils 
sealed together by the crosslinks. This situation is reminiscent of the overlap 
threshold concentration in semidilute polymer solutions. The gel then au- 
tomatically maintains a concentration proportional to the overlap threshold 
concentration c* .  Swollen gels obey simple scaling laws, based on the poly- 
mer concentration in the gels and hence on the threshold concentration 
(which are independent of the preparation conditions) as polymer solutions 
do. The gel can be visualized as a collection of adjacent “blobs,”each blob 
being associated with one chain, and having properties very similar to those 
of a solitary chain. 

Inside one of the blobs which compose a swollen network, the polymer 
chain does not interact with other chains (from the definition of the mesh 
size). The number of monomers per blob is related to this mesh size. The 
membrane itself can be considered essentially as a closely packed system 
of blobs; thus correlations of the excluded volume type exist. Based on an  
expression derived for the threshold concentration in semidilute polymer 
solutions, the network concentration c’ may be expressd as 

where k(+) is a constant, of order unity, dependent on the functionality + 
of the crosslinks and on the preparation conditions. For most polymeric 
networks, the functionality + is 3 or 4 because of the nature of the cross- 
linking reaction. This expression was derived for macromolecular networks 
in good solvents. 

Various scaling laws which apply to polymer solutions may be used for 
networks because of the parallel drawn between polymer solutions and 
polymeric membranes. This polymer concentration c’ can be related to the 
mesh size in much the same way as the threshold concentration c* is pro- 
portional to the distance between physical entanglements. When the net- 
work is placed in the presence of a solvent, it is assumed that the swelling 
of the elementary chain of the network (between two adjacent crosslinks, 
i.e., within a blob) is the same as that of an  equivalent chain between two 
entanglements in a semidilute solution. As a consequence of this, the equi- 
librium swelling conditions of the gel may be expressed: 

u3,s N n-4/5 (35) 

In this case, n refers to the number of links between entanglements or 
crosslinks and thus is proportional to the molecular weight between cross- 
links, @, which includes the effect of entanglements: 

The mesh size of the network would then be expected to obey the same 
scaling form as that hypothesized for semidilute solutions. It is proposed 
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therefore, on the basis of the similarity of moderately swollen membranes 
to semidilute polymer solutions, that the mesh size of such a swollen net- 
work be approximated as 

The mesh size so obtained would include the effect of any crosslink, physical 
entanglement, or chemical bond. 

The parameter representing the characteristic area available for per- 
meation in the expression for the normalized diffusion coefficient is a func- 
tion of the mesh size: 

Upon substitution of eq. (371, this parameter B(uT3) is expressed in terms 
of the polymer concentration as follows: 

Various functional forms of this dependence could be proposed, but at this 
stage of the development of the physical model for the prediction of the 
solute diffusion coefficient, perhaps only the simplest, a linear relationship 
(in much the same way as a linear relationship was proposed for the de- 
pendence of the diffusion coefficient in highly swollen membranes on the 
molecular weight between crosslinks) or a quadratic dependence (indicative 
of the effect of the available area for diffusion, i.e., the square of the mesh 
size), could be justified. 

Effect of the Degree of Swelling 

The effect of the degree of swelling of a polymeric network on the solute 
diffusion coefficient is expressed explicity by the free volume dependence 
of the effective diffusivity. In the expression for the normalized diffusion 
coefficient, eq. (151, both the free volume of the membrane and that of the 
pure diluent, V13 and V1, respectively, appear. The free volume of the mem- 
brane can be written in terms of its component free volumes by considering 
the free volumes to be additive: 

where u3,s is the polymer volume fraction at isothermal swelling equilibrium 
and V3 is the free volume of the polymer. From the expression for the 
normalized diffusion coefficient, eq. (15), the free volume contribution @( V) 
has been given as 

This term may be expanded in terms of the solute and polymer free volumes 
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by replacing the term V,, in light of the expression derived above for the 
free volume of the membrane. The term WV) may then be written as 

This expression for the free volume contribution to the normalized diffusion 
coefficient is for the general case. 

Highly Swollen Membranes 

In highly swollen membranes, the free volume of the polymer may be 
assumed to be negligible in comparison to that of the swelling agent. For 
highly swollen membranes, it is common to assume that the solute transport 
occurs by diffusion through the solvent only.15 This seems reasonable con- 
sidering both the amount of solvent present and the relative penetration 
by the solute of the solvent in comparison to the macromolecular chains 
which are hindered in moving by pendant side chains, crosslinks, and the 
coiled nature of the backbone chain. 

Applying the assumption just discussed by neglecting the free volume of 
the polymer, the free volume parameter WV) may be written as 

By defining the swelling ratio Q as the reciprocal of the polymer volume 
fraction at equilibrium, this term @( V) becomes 

‘WV) = 11 Vl(Q - 1) (44) 

which expresses the exponential effect of the membrane swelling ration on 
the normalized diffusion coefficient. 

Moderately Swollen Membranes 

At very low levels of swelling, the role of the solvent is to plasticize the 
polymer, (i.e., to facilitate segmental motion), rather than to provide a 
medium of transport.26 As the solvent is typically smaller then the monomer 
unit and certainly much smaller than the polymer chains, it is expected 
that all the elements of the polymer chain would be in intimate contact 
with the solvent. The proximity of the solvent would be determined by the 
thermodynamic interactions between the solvent and polymer. In hydrogels, 
this interaction would be expected to maintain a molecular separation close 
to that exhibited between water molecules. The free volume of the mem- 
brane would be expected then to be a strong function of the solvent volume 
fraction at low solvent concentrations (while the “bound” water layer is 
formed) until the free volume decreases from that of the polymer only to 
approach that of the solvent. 

The free volume contribution in such moderately swollen polymeric net- 
works must be determined using eq. (42). No simplifications as those used 
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to derive eq. (43) may be applied in this case. In terms of the swelling ratio 
Q, the free volume contribution may be expressed as 

Vl - v3 
@(v) = (Q - 1)Vf + V,V3 (45) 

Values for the free volumes of the polymer and the solvent are calculated 
in a straightforward manner. 

Solute Size 

The size of the diffusing solute is indicated by the term u p  in the expression 
for the normalized diffusion coefficient. This parameter expresses the char- 
acteristic volume of a particular solute. In general, u p  may be written in 
terms of a cross-sectional area, mr:,  and a length I,, which is on the order 
of the transitional jump length, which are characteristic of the solute: 

For low molecular weight compounds which are well represented by a spher- 
ical molecule, both r, and 1, would refer to either the equivalent spherical 
radius re or the Stokes hydrodynamic radius. For a high molecular weight 
compound, the evaluation of this parameter is more complicated. With 
proteins, it is assumed that r would refer to the half-axis of revolution, a, 
and that 1 would be represented by the equatorial axis, 2b. 

Final Form of the Physical Model 

Upon substitution of the various expressions into eq. (24) for the nor- 
malized diffusion coefficient in a moderately swollen polymeric network, 
the model takes its final form 

with 

and 

- 2AE k -~ 
- M,RT, 

If one knows the functional form of the dependence of the diffusion coef- 
ficient on the mesh size, this form of the normalized diffusion coefficient 
may be used to predict the influence of the mesh size, the degree of swelling, 
and the solute size on the screening effect of a polymeric membrane. 
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Experimental verification of this theory and evaluation of the function 
f ( u F 2 )  is offered in the next contribution of this series.27 

CONCLUSIONS 
This contribution offers a new model for diffusion of solutes through 

moderately swollen networks. The model incorporates topological and free 
volume characteristics of the network and offers a general expression which 
shows the dependence of the diffusion coefficient on the degree of swelling, 
the mesh size of the network, and the solute size. 
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